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J. Phys. A: Math. Gen. 16 (1983) 2987-2991. Printed in Great Britain 

Radiation damping in the pilot wave interpretation of 
quantum mechanics 

M C Robinson, C E Aveledo, L A Lameda and D Bonyuet-Lee 
Departamento de Fisica, Universidad de Oriente, Cumana, 6101 Venezuela 

Received 28 February 1983 

Abstract. To avoid the internal contradiction in the pilot wave interpretation inherent in 
the assumption of a charged particle moving in a closed orbit without radiating, it is 
proposed that the wavefunctions, cL,(r), corresponding to stationarystates, be real, implying 
that the particle is stationary. If the effect of radiation damping is included, the Hamiltonian 
contains the nonlinear term 

$ih7(d2/df2) ln[Q(r, f ) /Q*(r ,  t ) ] ,  

resulting in the stability of the stationary states 

If we substitute q ( r ,  t )  = R exp(iS/h), where R and S are real functions, into 
Schrodinger's time dependent equation for a single (charged) particle, we obtain upon 
separating the real and imaginary parts 

-aS/at  = (VS)'/2M + V ( r )  - h2VZR/2MR ( l a )  

aR ' / a t  + v ( v s ~  ' / M )  = 0. (16) 
In the pilot wave interpretation (de Broglie 1927, 1964, Bohm 1952), ( l a )  is 

considered to be the quantum-mechanical generalisation of the Hamilton-Jacobi 
equation in which the total energyE = +Slat ,  the momentump = V S ,  and the quantum 
potential energy Q = -hZV2R/(2MR). Equation ( l b )  is then a continuity equation 
for /*I2 = R 2 .  

If q,, (r, t )  = $, ( r )  exp(-iE,t/h) is a solution of Schrodinger's equation, ( l a )  reduces 
to 

(2a )  E,  = (VS)2/2M + V ( r )  -h2V2R/2MR. 

Furthermore, if $, (r )  is real 

E,  = (VS)'/2M + V ( r )  - h2V2$,/2M$,,. (26)  
A comparison of (26)  with Schrodinger's time independent equation reveals that 

V S  = 0; that is, the particle is stationary with the quantum-mechanical force, -VQ, 
cancelling the electrostatic interaction, -V V. However, in the case of a central force, 
the stationary state solution is usually written in the form 
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and 
L , = ( r x V S ) , = m h  (3c ) 

(Bohm 1952). If m # 0, the particle moves in a circular orbit with an angular frequency 

We are thus confronted with the historic problem of a charged particle supposedly 
undergoing acceleration without radiating; an obvious objection to the pilot wave 
interpretation which, surprisingly, does not seem to have been discussed in the 
literature. 

As one possible solution to this problem we suggest that the eigenfunctions, $,, ( r ) ,  
be limited to real functions. (Modifications of this hypothesis to account for magnetic 
interactions will be discussed in a future paper.) Thus, in the case of a central force, 
we may choose 

instead of ( 3 a ) .  
To test the stability of these solutions, we consider the effect of a small electric field, 

E = LE” sin ut, 

applied at time t = 0 upon a particle in the state n .  For the sake of simplicity, we 
shall indicate only the first quantum number, and also assume that w = w ( n ‘ ,  n )  = 
(E:, -E:) /h ,  so that, to first order in Eo, 

W r ,  t )  = $l l ( r )  exp(-iEllt/h) +EoC(t )4; - (r )  exp(-iE;,t/h) (4a 1 
where 

ihC = H : , , ,  sinwt exp[iw(n’, n ) t ]  
and 

H:,, ,  = -I , ) : . ( r ) (er  cos e )$z ( r )  d3r. (4c ) 

As will be shown below, the motion of the particle is now that of a forced, 
underdamped, harmonic oscillator and radiation should, therefore, be emitted. At 
velocities /il<< c, the radiation reaction (Plass 1961) is given by 

(5a 1 F, = (2e2/12mOMc3)P = r d2(VS)/dt2 

where the total derivative 

d/dt = a/at + U  . v = a/at +M-’QS - v. ( 5 6 )  
As can be seen with the aid of ( l o a )  below 

d2(VS)/dt’ = a2(vs)/at2 = V(a2s/at2) (5c ) 

F, - V 9  (6a ) 

3 = -T a2s/at2 = tihr a’ 1n(q/q*)/at2.  ( 6 6 )  

to first order in Eo. Therefore, to the same order, 

where the ‘radiation reaction potential’ 
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To take into account the radiation reaction, we can now modify ( la)  to give 

-aS/at = (VS)’/2M + V ( r )  - h2V2R/2MR -7 a2S/at2 (7) 

which together with (16) is equivalent to the nonlinear Schrodinger equation: 

i A  M / a t  = [-A2V2/2M + V ( r )  +E&’ sin wt + iihr a2 ln(9/9*)/at2]9. (8) 

We see that when the particle is in a stationary state described by a real function, 
$,,(r), (8) reduces to the usual Schrodinger equation. 

We shall now find an approximate expression for R to first order in Eo. From 
(4u), we have 

It is probable that the position, r, of the particle is such that $ : ( r )  is close to its 
maximum value so that usually $:,(r)/$:(r)sl. At any rate, since there is zero 
probability that $ z ( r )  = 0 (Bohm 1952), we can always make the approximation that, 
for sufficiently small values of Eo, 

*/** = exp(-2 i~ : t /~) ( l+  ~ ~ E O P I I I I P / S X )  (96) 

(9c) 

where 

p =Im{C exp[-iw(n’, n)r]}=Im C cos[w(n’, n)t]-Re C sin[w(n’, n)t]. 

After expanding lnW/V*) to first order in Eo, we find 

S = -EO,t +pAEo$O,,/$: 

P = PfiEoV($:,/$:) 

92 = -~@hEo+:#/$:. 

If we now substitute (1Oc) and (4a) in (8), we obtain 

ihC = (H;,,, sin u t  - T@A) exp[io(n’, n)t] 

instead of the usual expression, (46). Separating the real and imaginary parts gives us 

-AI~C=(HA, ,  sinot-rbA)cos[w(n’,n)t] (116) 

(1lC) A Re C = (HA,,, sin wt -rbA) sin[w(n’, n)t]. 

It follows that 

Im C sin[w(n’, n)t]+Re C cos[w(n’, n) t ]= 0. 

a = Re{C exp[-iw(n’, n)t]}= Re C cos[w(n’, n)t]+Im C sin[w(n’, n)t]. 

ai = w ( n ’ ,  n){Im C cos[w(n’, n)t]-Re Csin[w(n’, n)t]}=w(n’, n)P 

from which 

( 1 W  

W a )  

(126) 

We now introduce the function 

With the help of ( l ld)  

@=E/w(n’ ,n)  (12c) 
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and 

(Y = w ( n ’ ,  n){Im C cos[w(n’, n)t]-Re C sin[w(n’, n)t]}-w2(n’, n)a .  

Combining (12c), (12d), (116) and ( l l c )  results in 

( 1 2 4  

- T ; + & + w ~ ( ~ ‘ ,  n ) a  = -[H;,,,o(n‘, n)/h]sinwr. (13) 

The non-divergent solution of (13) which satisfies the boundary conditions, C = 0 
andp=VS=O,  is 

~ 2 = W ( f l ’ ,  n)[ l  - ( i j ) T 2 W 2 ( n ’ ,  n)]. (14c) 

If the particle is an electron and w ( n ‘ ,  n) - 10l6 (ultraviolet), W I  and w z  differ from 
~ ( n ‘ ,  n )  by less than one part in 1014. 

From (14a) and (12b), we have 
1 2  2 2 3 

W2TW - f ( T W : / W 2 ) { W [ W 2 ( n ‘ ,  n ) - W 2 ] - T T  W i W  } 
[U ’(n‘, n ) --O 2 ] 2  + T 2 W 6  

sin w2t 

W [ W 2 ( U ’ ,  n ) - w 2 ]  + 2 6 C O S W 2 t  
[ W 2 ( n ’ ,  n ) - W 2 ] 2 + T  W 

From (15) and (106) it is seen that, to the first order in Eo, the motion of the 
particle is that of a forced, underdamped harmonic oscillator. If we wish to use 
pictorial analogies we can think of the particle as being embedded in a highly elastic 
‘jelly’ which resonates at the Bohr frequencies. 

So far these results are encouraging. However, we still have to discover whether 
a more general solution and a more accurate Hamiltonian will explain such phenomena 
as ‘spontaneous’ radiation, ‘transitions’, etc. A more difficult problem would seem to 
be the explanation of magnetic interactions between stationary charged particles. A 
possible solution of this second problem, based on the consideration of interactions 
via the quantum field, will be discussed in a future paper. 

We wish to emphasise that we do not claim that the model discussed in this paper 
is correct, even to a first approximation. However, we are convinced that it is a 
plausible extension of the pilot wave interpretation that needs to be analysed, without 
excluding the possibility of some other, more radical, modification. Finally, we wish 
to mention that Andrade e Silva er a1 (1960) have already claimed, on more general 
grounds, that atomic processes must be governed by nonlinear differential equations 
such as (8). 
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